Course Type	Course Code	Name of the Course	L	Т	Р	Credits
DC	NCEC520	River Engineering	3	1	0	4

Course Objective

To introduce fundamentals of fluvial system, flow and sediment transport mechanism in rivers and their responses to interventions.

Learning Outcomes

Upon completion of this course, student will

- Understand the characteristics of different types of rivers
- Understand sediment transport and erosion processes in rivers
- Get knowledge of flow sediment interaction with hydraulic structures and river training work
- Able to do physical and numerical modelling of river flow

Unit No.	Topics to be Covered	Contact Hours	Learning Outcome
1	Introduction: River classification, river morphology, major river projects in India Properties of sediment, stress concept on cohesion less and cohesive soils.	6L+1T	 Able to classify rivers. Understand the basic properties of river sediment.
2	Hydraulics of river flow: Governing equations, flow resistance in rivers, bed forms; velocity and shear stress distribution in rivers.	10L+3T	 Thorough idea of governing equations for steady and unsteady flow. Shear stress distribution along the bank and bed of a river
3	Sediment transport in rivers: incipient motion condition, bed load, suspended load and total load transport, mechanism of suspension; reservoir siltation.	8L+3T	 Able to estimate river aggradation and degradation Estimate reservoir sedimentation
4	Fluvial mechanics of braided rivers, bar formation, river meandering	6L+2T	 Understand various bar formation in rivers Understand the formation of river meanders
5	Physical river models, scour process around piers and embankments, bank protection and stabilization, river training work.	7L+2T	 Able to do physical river model Able to calculate scour depth Thorough idea of various river training work
6	Introduction to the numerical modelling of fluvial system, use of open source code/matlab/fortran/python for river modelling	5L+3T	• Able to use numerical tool for flow and sediment transport modelling
	Total Contact Hours	42L+14T	

Text Books:

- 1. Garde, R.J. (2006) "River Morphology", New International Publishers
- 2. Pierre Y. Julien (2018), "River Mechanics", Cambridge University Press

Reference Books:

- 1. Wu W. 2007. "Computational river dynamics", Taylor and Francis.
- 2. Garde, R.J. and Ranga Raju, K.G. (2006) "Mechanics of Sediment Transportation and Alluvial Stream Problems", Wiley Eastern Limited.
- 3. Julien, P.Y. (1998) "Erosion and Sedimentation", Cambridge University Press